Build a Three-Tier Web App

By Chisom Uketui

In this project, | will be demonstrating how to set up a three-tier web app from scratch! | will
start with the presentation layer, then set up the logic tier and finally set up the data tier
before tying them all together. Below diagram shows the architecture of this project.

Three-Tier Architecture Series

Presentation tier

4 >
<> SETUP [ouTPUT
soriptjs Indexhiml - style.css 3 bucket CloudFront Distributed

distribution website

L v

Logic tier
G
API Gateway Lambda
function
Data tier .
DynamoDB

database

Set Up the Presentation Tier

In this step, for the presentation tier, | will set up how my website will be displayed and
availabe to my end users. This is because the presentation tier is responsible for storing my
website's files(Amazon S3) + website distribution (Amazon CloudFront).

Create an s3 bucket and upload my files (index.html, style.css and script.js.) in it.

Here is my html, just a simple webpage

O v RO L& ovD @

User Information

Enter User ID ‘[Get User Data ‘

Successfully uploaded my files onto my s3 bucket.

® Upload succeeded

For more information, see the Files and folders table.

Files and folders (3 total, 1.7 KB)

[Q, Find by name]

Name | Folder v | Type v | Ssize v | status v
script.js [R‘ - text/javascript 680.0B ®) Succeeded
style.css [2 - text/css 447.0B) Succeeded
index.html [- text/html 564.0 B ® Succeeded

Create a CloudFront Distribution

Now that my website files are uploaded, | will then go ahead to create cloudfront distribution.
Amazon CloudFront is a Content Delivery Network (CDN), which means it speeds up the
distribution of your static and dynamic web content, such as .html, .css, .js, and image files.

For default root object, I’'m using my index.html

Supported HTTP versions

Add support for additional HTTP versions. HTTP/1.0 and HTTP/1.1 are supported by default.
HTTP/2

D HTTP/3

Default root object - optional
The object (file name) to return when a viewer requests the root URL (/) instead of a specific object.

[index.html

IPv6
O off
O on

= CloudFront » Distributions » E1RKEAYAGONDA4S £ @

® Successfully created new distribution.

To get in-depth monitoring information for your distribution’s internet traffic, create an Internet Monitor |

E1RKEAYAGONDA4S

General Security Origins Behaviors Error pages Invalidations Tags Logging
Details
Distribution domain name ARN Last medified
IO dlawba178apc9a.cloudfront.net u| © Deploying
armncaws:cloudfront::471112976395:distribu
tion/ETRKEAYAGOND4S

My s3 bucket policy now needs to be updated using cloudfront policy statement. This is to
allow read access to CloudFront origin access control in our s3 bucket.

-
e Amazon S3 » Buckets > nextwork-three-tier-name-numbers 0] £ 0

Amazon 53 < nextwork-three-tier-name-numbers i1

General purpose buckets

Directory buckets < ta- Preview Properties Permissions Metrics Management Access Pol >

Table buckets New —_——
Access Grants . .

. Permissions overview
Access Points

Object Lambda Access Points Access finding
Access findings are provided by |AM external access analyzers. Learn more about How IAM analyzer findings work_u
Multl-REglon Access Points View analyzer for us-east-1

Batch Operations

IAM Access Analyzer for 53
Block public access (bucket settings)
.) Public access is granted to buckets and objects through access control lists [ACLs), bucket policies, access point policies, or Il In
Block Public Access settings for order to ensure that public access to all your 53 buckets and objects is blocked, turn on Block all public access. These settings
this account apply only to this bucket and its access points. AWS recommends that you turm on Block all public access, but before applying any

of these settings, ensure that your applications will work comrectly without public access. If you require some level of public access
m to your buckets or objects within, you can customize the individual settings below to sult your specific storage use cases. Learn

rE Amazon S3 > Buckets > nextwork-three-tier-name-numbers > Edit bucket policy

Bucket ARN

[C] arn:aws:s3::nextwork-three-tier-name-numbers

Policy
1v {
2 "Version": "Z@@8-10-17",
3 "Id": "PolicyForCloudFrontPrivateContent”,
4w "Statement”: [
Sv {
6 "Sid": "AllowCloudFrentServicePrincipal”,
7 "Effect”: "Allow",
8w "Principal™: {
9 "Service": "cloudfront.amazonaws.com™
10 1,
11 "Action": "s3:GetObject”,
12 "Resource”: "arn:aws:s3:::nextwork-three-tier-name-numbers/*",
13+ "Condition": {
14w "StringEquals": {
15 "ANS:SourceArn”: "arn:aws:cloudfront::471112976395: distribution/E1RKEAYAGOND4S"
16 }
17 1
18 H
19]

3

L

| will try to access my delivered website using the cloudfront distribution’s URL. This
distribution shoud because because | have also set up an origin access control that lets my
S3 bucket restrict access to only my CloudFront distribution.

Cloudfront URL:

Details

Distribution domain name
[0 |d1awba178apc9a.cloudfront.net

Perfect!!! it works. This ticks off the presentation tier, which is all about the interface that my
users will see and interact with.

L] @ @ Fotch User Data o+

€« » C (!; dlawbal78apca.cloudfront.net @, f?) Y D@

User Information

‘EnterUserlD ‘ ‘ Get User Data ‘

Set Up the Logic Tier

The logic tier is responsible for handling the brains of the application, such as fetching data
from a database and performing calculations. In this project, my logic will be a simple
Lambda function that retrieves user data from a DynamoDB table. | need a way to expose
that functionality to the outside world, so | will use APl Gateway to handle requests and route
them to the right place.

i

API Gateway Lambda
function

In this step, I’'m going to:

Create a Lambda function to fetch data from a DynamoDB table.
Write the code for my Lambda function.

Create an API| Gateway REST API.

Create a resource and method to handle GET requests.

Deploy the API to make it accessible.

API GATEWAY

(

N\
\USERS

RESOURCE

User J Lambda

GET method
_ W,

O _o 5

Here is the code for my Lambda function:

©®

PR £ RetrieveUserData DEBDoes
= EXPLORER 15 index.mjs X m -
“ RETRIEVEUSERDATA)5 index.mijs > ...
g J5 index.mjs 1 // Load the AWS SDK for Node.js =
2 const AWS = require('aws-sdk');
p 3 // Set the region
4 AWS.config.update({region: ‘us-east-2'}}); // Example: 'us-west-2'
5
ﬁl‘> 6 // Create the DynamoDB service object
T const ddb = new AWS.DynamoDB.DocumentClient();
~ DEPLOY [UNDEPLOYED CHANGES] 8

[m}
& & You have undeployed changes. 9 exports.handler = async (event) = {
10 // Assume the incoming event is an API Gateway event with user ID passed as a

Deploy (¢#U) 11 const userld = event.queryStringParameters.userld;
12
L) 14 TableName: 'UserData',

15 Key: {
~ TEST EVENTS [NONE SELECTED] 16 "userId': userld
+ Create new test event 17 }

1o 1.

The Lambda function retrieves data by looking up the user ID(that our user will enter over the
webpage) in dynamoDB. The AWS SDK is used in the function code so we can use template
and libraries that lets us find the correct DynamoDB table + request data.

—
index.mjs X m -
index.mjs > ...

9 exports.handler = async (event) == { E=
23 const response = {

e DOAy: JSUN.STringlityiaata..item;,

26 headers: {

27 ‘Content-Type': ‘application/json’

28 }

29 +;

30 return response;

31 } catch (err) {

32 console.error("Unable to retrieve data: ", err);

33 return {

34 statusCode: 500,

35 body: JSON.stringify({ message: "Failed to retrieve user data" }),

36 headers: {

37 'Content-Type': 'application/json' —_
38 }

i: y i (i) Deployment successful

Set up APl Gateway

Now that | have my Lambda function ready, | need a way to access it. This is where API
Gateway comes in. An API, or Application Programming Interface, is a way for different
software systems to talk to each other. It's like a messenger that carries requests and
responses between systems.

In this project, I’'m creating an API that carries requests from my user's browser to my
Lambda function.

= APl Gateway > APls > Resources- UserRequestAP| (yoBz6vf1ql) ®

(@ Successfully created REST AP| 'UserRequestAP| (yoB8z6vfigl). x

Resources Deploy API
Resource detail.s (Update documentation) Enable CORS

Path Resource ID
/ / iqmb86mof

Methods (0) Delete

Method type A Integration type v Authorization v API key v

No methods

No methods defined.

| will now create a resouce. API resources are endpoints that handle different parts of your
API's functionalities.

For example, an API for a messaging app might have separate resources for retrieving
messages and for retrieving user profiles.

Resource details

(O Proxy resource Info
Proxy resources handle requests to all sub-resources. To create a proxy resource use a path parameter that ends with a plus sign, for example {proxy+}.

Resource path Resource name

G 7) (o)

Set up an APl Method

e —
APl GATEWAY
(T)
USERS
RESOURCE

;J Lambda
GET method

You are here!
- _/

API methods are actions you can do in a resource.

They are based on standard HTTP methods, which are different commands that let you
interact with data over the internet. E.g GET to retrieve, DELETE to remove data, POST to add
etc. For this project, | will go with the GET method and Lambda integration option.

Method type

{GET A}

ANY

DELETE

GET v

h, v

HEAD

OPTIONS

= APIGateway > APl > -1 Pl (yo8z6vf1ql) © ©
"usgrs - GET - Method execution (Update documentation) (Delete)
=] ARN Resource ID
! l_[j arn:aws:execute-api:us-east- gix2we
[fusers 2:471112976395:yo8z6vi1ql/*/GET/users
GET
- Method request — Integration -
request
=3 I\
—= Lambda
Client integrat
Integration ion
<« Method response «— response — .
Proxy integration

Deploy the APl in Prod stage:
In APl Gateway, a stage is a snapshot of your API at a specific point in time.

API Gateway lets you deploy different versions of your API to different stages. This way, you
can easily control who accesses what version of your APl and when.

Deploy API X

Create or select a stage where your API will be deployed. You can use the deployment
history to revert or change the active deployment for a stage. Learn more [%

Stage

[*New stage* v)
Stage name

[prod J
e ™

(O A new stage will be created with the default settings. Edit your stage settings
on the Stage page.
. J

Deployment description

r B

Deployment success!

| Gateway » APls > UserRequestAPI (yo8z6vfigl) » Stages (

s cone
1 Stage details o (e

Stage name Rate Info

prod 10000

Web ACL Cache cluster info

= (3 Inactive

Burst Info Client certificate

5000

Default method-level caching

(Inactive

Let’s visit my API using the invoke URL. In real world scenarios, developers use the prod
stage's invoke URL into their live application's code, so users are using the live/production
version of the API.

Invoke URL
ttps://y0826vf1 ql.execute-api.us-east-2.amazonaws.com/prod

But, | got an error because | haven't set up my DynamoDB table yet. That's okay! We're
getting to that next &

[] ® O yoszevfiglexecute-aplus-e X +

€ @ % yoBzéviigl.execute-api.us-east-2.emazonaws.com/prod

Pretty print (]

{"message":"Missing Authentication Token"}

Set Up the Data Tier

I've got website files distributed through CloudFront, and a Lambda function that's ready to
retrieve data.

Now, let's put my API to use. The data tier is where | store all the data that my application
uses.

I'lluse DynamoDB to store some user data. Therefore:
In this step, I’m going to:

e Create a DynamoDB table.
e Add user datainto my table.

Data tier

DynamoDB
database

DynamoDB(DDB) is my NoSQL database. It's fast, flexible, and perfect for storing user data.

Creating DDB table:

r

Partition key
The partition key is part of the table's primary key. It is a hash

(userld

1 to 255 characters and case sensitive.

The partition key for my DDB table is ‘userld’. This means that when my table looks up for

user data, it will look it up based on userld. Then, it can return all data(values) related to the
item with that ID.

A partition key is the heart of how DynamoDB organizes data. Think of it as a label that you
can use to group similar items. Under the hood, the partition key is how DynamoDB spreads
out your data across different servers for quick access and efficient querying.

Every item in your table must have a unique partition key.

= DynamoDB > Tables

. Creating the UserData table. It will be available for use shortly.

Tables (1) Info @ Actions ¥ Delete \mm B

Q, Find tables Any tag key v 1 ©
[) ()

a Name & Status v Partition key ¥ Sortkey ¥ Indexes ¥ Replication Regions ¥ Deletion protection ¥ Favori

[J UserData © Creating userld (5) = 0 0

Create an item:

json () Copy code

&
"userId": "1",
"name": "Test User",
"email": "test@example.com"
I

This JSON code defines a new item for my UserData table.

DynamoDB is schemaless, meaning you can add attributes as you need, and every item in
your database can have a different set of attributes. This flexibility is one of the key benefits
of using a NoSQL database like DynamoDB.

Create item

You can add, remove, or edit the attributes of an item. You can 1

Attributes @ View DynamoDB JSON

| 1vfi
2"

"userId": {
3 . e
4 |
5v "name": {
6 "S": "Test User"
£ },
8v "email": {
9 "S": "test@example.com"
10 }

11 [}

Items returned (1)

@ C Actions V¥) (Create item)

1 & X
O userld (String) ¥ | email v | name

O 1 test@example.com Test User

Grant DynamoDB read only access to Lambda

Other permissions policies (1/1067)

Filter by Type

[Q. dynamodb X J [All types v]
2 Policy name a | Type
O = AmazonDynamoDBFullAccess AWS managed
[AmazonDynamoDBReadOnlyAccess AWS managed
O 03} AWSLambdaDynamoDBExecutionRole AWS managed
O AWSLambdalnvocation-DynamoDB AWS managed

Yay! Permissions added. This means my Lambda function should be able to read DynamoDB
table items.

With the data tier ticked off, I’'m officially ready to merge the three layers!

Integrate the Tiers

I've built all three tiers of my application!

Now, it's time to connect the presentation and logic tier together. Currently, there is no way
for my API to catch requests that users make through my distributed site.

| will Update my script.js file with JavaScript code to make an API request.

To Verify API Functionality, paste the APl invoke URL but appended with “ fusers?userld=1" to
the end of the URL . I will run the new edited urlin my browser. The results were some user
data in JSON which proofed a logic + data tier connection.

Pretty print (]

{"email":"test@example.com","name":"Test User","userId":"1"}

That's the logic and data tier's integration verified

Now let's check my distributed website on CloudFront by typing in 1.

User Information

I 1 l I Get User Data

M @ topv & Y Filter

Nolssues 4 hidden §83

M= games=a responded with a status of 403

(Forbidden)
> (@ 44userm.. @ v Failed to fetch script.js:19
> ® 80 errors user data: SyntaxError: Unexpected
token '<', "<?xml vers"... is not
/\ No warnin... valid JSON
> (:) 4 info fetchUserData @ script.js:19

{# Noverbose @ /[YOUR-PROD-API-URL]/users?userld=.

Failed to load resource: the server
responded with a status of 463
(Forbidden)

M w Cailad +a fa+rh crrint de0:10

async function fetchUserData() {
const userId = document.getElementById('userId').value;
if (l!userId) {
alert('Please enter a User ID');
return;

}
try {
const response = await fetch(https://[YOUR-PROD-API-URL]/users?userId=${userId}");
const data = await response.json();
const userDetails = document.getElementById('userDetails');
if (response.ok) {
userDetails.innerHTML = “<pre>${JSON.stringify(data, null, 2)}</pre>";
} else {
userDetails.innerHTML = "<p>${data.message}</p>";
}

} catch (error) {
console.error('Failed to fetch user data:', error);
}

}

Trouble shooting from browser’s developer tool, | got an error because there was an error
within my script.js (one of the files i uploaded into s3). This file is referencing a prod stage API
placeholder and not my API’s actual URL. To resove the error, | reuploaded script.js into s3
because s3 is still storing the last uploaded version with error.

& upload succeeded

For mare information, the Files and folders table.

Upload: status Close
[(D After you navigate away from this page, the following information is no lenger avallable,]
Summary
Destination Succeeded Falled
53/ inextwork-three-ther-name- 123 @ 1 file, 720.0 B (100.00%) © 0 files, 0 B [0%)
Files and folders Configuration

Files and folders (1 total, 720.0 B)

p \
Q Find by nome 1
\ J
Mame | Folder v | Type v | Size v | Status v | Eror v
seriptjs (3 - taxt/javascript 72008 @) succeeded

Vaidate a Fully Functioning Web App

| ran into another error when | tried to access my website through the CloudFront URL again.

User Information

‘1 ‘ [Get User Data ‘

i [D Elements Console Sources >>
M @ topy © Y Filter

» = 4 messages gar e favicon.ico:1 @
https://d13i8ajhi56kbm. cloudfront.net/favicon. ico
» (® 1usermes... 403 (Forbidden)

> 4 errors Access to fetch d13i8ajhi56kbm.cloudfront.net/:1

at '

/\ No warnings https://adb8nbqglr4.execute-api.us—east-2.amazona.

@ No info ' from origin '
https://d13i8ajhi56kbm.cloudfront.net' has been

{F No verbose blocked by CORS policy: No 'Access—Control-Allow-—
Origin' header is present on the requested
resource. If an opaque response serves your
needs, set the request's mode to 'no-cors' to
fetch the resource with CORS disabled.

» GET script.js:9 @
https://adb8nbqglr4.execute-api.us—east-2.amazona..
net::ERR_FAILED 200 (OK)

» Failed to fetch user data: script.js:19
TypeError: Failed to fetch

at fetchUserData (script.js:9:32)

at HTMLButtonElement.onclick ((index):13:43)

The CORS (Cross-Origin Resource Sharing) error | encountered happened because my API
Gateway is not configured to allow requests from my CloudFront URL.

API Gateway is only allowing requests directly from its Invoke URL!

To resolve this, I'll need to enable CORS on my API Gateway so that it can accept requests
from the domain where my frontend is hosted.

= APlGateway > APls > Resources - UserRequestAPI (adb8nbq1rd) ®

Resources —

Resource details
(Delete) (Update documentation)[(Enable CORS)]
&y

[fusers Path Resource 1D
Jusers 809gly

GET

Using my CloudFront distribution domain name as the Access-Control-Allow-Origin value.
This will allow requests from my CloudFront domain to my API. Afterwards, | will redeply my
API.

Access-Control-Allow-Origin
Enter an origin that can access the resource. Use a wildcard "' to allow any origin to access the resource.

[https://d13i8ajhi56kbm.cloudfront.net]

In this step | will also add CORS Headers in my Lambda Function response. | updated
Lambda function because it needs to be able to return CORS headers to show that it has the
permission to invoke the API’s invoke URL and return a response.

L 3
index.mjs X
index.mjs > € handler > /2 headers
7 async function handler(event) {
30 headers: {
32 'Access—Control-Allow-0rigin': 'https://d13i8ajhi56kbm.cloudfront.net’
33 },
34 body: JSON.stringify({ message: "No user data found" })
35 +;
36 b
37 } catch (err) {
38 console.error("Unable to retrieve data:", err);
39 return {
40 statusCode: 500,
41 headers: {
42 'Content-Type': 'application/json',
43 'Access-Control-Allow-0rigin': 'https://d13i8ajhi56kbm.cloudfront.net’
A aa i

= \Lambda > Functions > RetrieveUserData

Code source info (upload from ¥

« O RetrieveUserData DB
= EXPLORER index.mjs X
> RETRIEVEUSERDATA)5 index.mjs > @ handler > /2 headers > /2 'Access-Control-Allow-Origin'
@ “ DEPLOY 8 async function handler(event) {
22 headers: {
/O Deploy ($38U) 23 'Content-Type': 'application/jsen',
24 'Access-Control-Allow-Origin': 'http://d3tvqgj7m48eu6.cloudfront.n:
> Test (©-31) 25 k,
e 26 body: JSON.stringify(Item)
27 b
Eg—' 28 } else { I
29 return {

“ TEST EVENTS [SELECTED: (UNSA...
A 30 statusCode: 404,

The Final Test...

e Let's do one more refresh of my CloudFront domain name.
e WOAHH, | can now see the data fetched from DynamoDB displayed on my website!

User Information

"email": "test@example.com",
"name": "Test User",
"userId": "1"
1 ‘ ‘ Get User Data }

