
Build a Three-Tier Web App
By Chisom Uketui

In this project, I will be demonstrating how to set up a three-tier web app from scratch! I will

start with the presentation layer, then set up the logic tier and finally set up the data tier

before tying them all together. Below diagram shows the architecture of this project.

Set Up the Presentation Tier

In this step, for the presentation tier, I will set up how my website will be displayed and

availabe to my end users. This is because the presentation tier is responsible for storing my

website's files(Amazon S3) + website distribution (Amazon CloudFront).

Create an s3 bucket and upload my files (index.html, style.css and script.js.) in it.

Here is my html, just a simple webpage 🙂

Successfully uploaded my files onto my s3 bucket.

Create a CloudFront Distribution

Now that my website files are uploaded, I will then go ahead to create cloudfront distribution.

Amazon CloudFront is a Content Delivery Network (CDN), which means it speeds up the

distribution of your static and dynamic web content, such as .html, .css, .js, and image files.

For default root object, I’m using my index.html

My s3 bucket policy now needs to be updated using cloudfront policy statement. This is to

allow read access to CloudFront origin access control in our s3 bucket.

I will try to access my delivered website using the cloudfront distribution’s URL. This

distribution shoud because because I have also set up an origin access control that lets my

S3 bucket restrict access to only my CloudFront distribution.

Cloudfront URL:

Perfect!!! it works. This ticks off the presentation tier, which is all about the interface that my

users will see and interact with.

Set Up the Logic Tier

The logic tier is responsible for handling the brains of the application, such as fetching data

from a database and performing calculations. In this project, my logic will be a simple

Lambda function that retrieves user data from a DynamoDB table. I need a way to expose

that functionality to the outside world, so I will use API Gateway to handle requests and route

them to the right place.

In this step, I’m going to:

Create a Lambda function to fetch data from a DynamoDB table.
Write the code for my Lambda function.
Create an API Gateway REST API.
Create a resource and method to handle GET requests.
Deploy the API to make it accessible.

Here is the code for my Lambda function:

The Lambda function retrieves data by looking up the user ID(that our user will enter over the

webpage) in dynamoDB. The AWS SDK is used in the function code so we can use template

and libraries that lets us find the correct DynamoDB table + request data.

Set up API Gateway

Now that I have my Lambda function ready, I need a way to access it. This is where API

Gateway comes in. An API, or Application Programming Interface, is a way for different

software systems to talk to each other. It's like a messenger that carries requests and

responses between systems.

In this project, I’m creating an API that carries requests from my user's browser to my

Lambda function.

I will now create a resouce. API resources are endpoints that handle different parts of your

API's functionalities.

For example, an API for a messaging app might have separate resources for retrieving

messages and for retrieving user profiles.

Set up an API Method

API methods are actions you can do in a resource.

They are based on standard HTTP methods, which are different commands that let you

interact with data over the internet. E.g GET to retrieve, DELETE to remove data, POST to add

etc. For this project, I will go with the GET method and Lambda integration option.

Deploy the API in Prod stage:

In API Gateway, a stage is a snapshot of your API at a specific point in time.

API Gateway lets you deploy different versions of your API to different stages. This way, you

can easily control who accesses what version of your API and when.

Deployment success!

Let’s visit my API using the invoke URL. In real world scenarios, developers use the prod

stage's invoke URL into their live application's code, so users are using the live/production

version of the API.

But, I got an error because I haven't set up my DynamoDB table yet. That's okay! We're

getting to that next 😉

Set Up the Data Tier

I've got website files distributed through CloudFront, and a Lambda function that's ready to

retrieve data.

Now, let's put my API to use. The data tier is where I store all the data that my application

uses.

I'll use DynamoDB to store some user data. Therefore:

In this step, I’m going to:

Create a DynamoDB table.
Add user data into my table.

DynamoDB(DDB) is my NoSQL database. It's fast, flexible, and perfect for storing user data.

Creating DDB table:

The partition key for my DDB table is ‘userId’. This means that when my table looks up for

user data, it will look it up based on userId. Then, it can return all data(values) related to the

item with that ID.

A partition key is the heart of how DynamoDB organizes data. Think of it as a label that you

can use to group similar items. Under the hood, the partition key is how DynamoDB spreads

out your data across different servers for quick access and efficient querying.

Every item in your table must have a unique partition key.

Create an item:

This JSON code defines a new item for my UserData table.

DynamoDB is schemaless, meaning you can add attributes as you need, and every item in

your database can have a different set of attributes. This flexibility is one of the key benefits

of using a NoSQL database like DynamoDB.

Grant DynamoDB read only access to Lambda

Yay! Permissions added. This means my Lambda function should be able to read DynamoDB

table items.

With the data tier ticked off, I’m officially ready to merge the three layers!

Integrate the Tiers

I've built all three tiers of my application!

Now, it's time to connect the presentation and logic tier together. Currently, there is no way

for my API to catch requests that users make through my distributed site.

I will Update my script.js file with JavaScript code to make an API request.

To Verify API Functionality, paste the API invoke URL but appended with “ /users?userId=1” to

the end of the URL . I will run the new edited url in my browser. The results were some user

data in JSON which proofed a logic + data tier connection.

That's the logic and data tier's integration verified ✅

Now let's check my distributed website on CloudFront by typing in 1.

Trouble shooting from browser’s developer tool, I got an error because there was an error

within my script.js (one of the files i uploaded into s3). This file is referencing a prod stage API

placeholder and not my API’s actual URL. To resove the error, I reuploaded script.js into s3

because s3 is still storing the last uploaded version with error.

Vaidate a Fully Functioning Web App

 I ran into another error when I tried to access my website through the CloudFront URL again.

The CORS (Cross-Origin Resource Sharing) error I encountered happened because my API

Gateway is not configured to allow requests from my CloudFront URL.

API Gateway is only allowing requests directly from its Invoke URL!

To resolve this, I'll need to enable CORS on my API Gateway so that it can accept requests

from the domain where my frontend is hosted.

Using my CloudFront distribution domain name as the Access-Control-Allow-Origin value.

This will allow requests from my CloudFront domain to my API. Afterwards, I will redeply my

API.

In this step I will also add CORS Headers in my Lambda Function response. I updated

Lambda function because it needs to be able to return CORS headers to show that it has the

permission to invoke the API’s invoke URL and return a response.

The Final Test...

Let's do one more refresh of my CloudFront domain name.
WOAHH, I can now see the data fetched from DynamoDB displayed on my website!

